
The ordered phase of electron vortices

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys.: Condens. Matter 2 1927

(http://iopscience.iop.org/0953-8984/2/7/023)

Download details:

IP Address: 171.66.16.96

The article was downloaded on 10/05/2010 at 21:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/2/7
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter 2 (1990) 1927-1931. Printed in the UK 

LETTER TO THE EDITOR 

The ordered phase of electron vortices 

Bogdan R Bulka 
Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17/19, 
60-179 Poznan, Poland 

Received 9 November 1989 

Abstract. Stability conditions for the ordered state of the magnetic fluxes induced by rotating 
electrons on a square lattice are analysed in the mean-field approximation for the extended 
Hubbard model. It is shown that the flux phase can appear if the exchange energy VI is 
sufficiently large. The order parameter, magnetic flux enclosedin the unit cell, and critical 
temperature of the flux phase are monotonically increasing functions of VI. It is also shown 
that the flux and the antiferromagnetic phase can coexist. 

A few years ago Fisher and Fradkin [1], when analysing a 2D tight-binding model of 
electrons in a magnetic field, realised that in the case when the magnetic flux per 
plaquette 0 of a square lattice is equal to hc/2e time-reversal invariance is not truly 
broken. There is no difference in the physics for the system with the flux +Q? and 
-CP. The system has a semi-metallic band structure. Recently the problem reappeared 
together with new concepts of superconductivity [ 2 ] .  The authors [2] considered a 
strongly correlated electron system in the framework of a pure exchange model (called 
also the t-J model), which is a canonical transformation of the Hubbard model in the 
limit of the large on-site Coulomb energy Uo. Using a slave-boson formalism it was 
shown that in the system with the average number of electrons ii = 1 per site, besides 
the superconductivity there is a flux phase with the fluxes CP = +hc/2e ordered as a 
chess-board. 

It is surprising that the authors [l, 21 analysed the ordered flux state only with the 
flux 0 equal to hc/2e. Is it not possible that there is a flux state with another value of Q?? 
The flux Q?, as the order parameter, should be dependent on interactions in the system 
as well as on temperature. The purpose of the present work is to investigate this problem 
in the framework of the extended Hubbard model, which is richer than the t-J model. 
This should enable us to understand the role of the exchange process for stability of the 
flux phase. Besides the flux state the magnetic and the charge density orderings are 
analysed. 

I start with the description of the considered model. It is a two-dimensional tight- 
binding model of electrons on a square lattice. Its Hamiltonian has the form 
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Figure 1 .  The system under consideration--elec- 
tron vertices periodically ordered on a square lat- 
tice. @denotes the magnetic flux, which isinduced 
by a rotating current around the plaquette. 

Here, e,, denotes an annihilation operator of an electron with spin a (a  = i- , - for the 
spin up and down) at the site i, S is the vector to the nearest-neighbour site. The first 
term describes hopping of electrons, the second term the interactions of two electrons 
with the opposite spins at the same site, and the two last terms describe the Coulomb and 
exchange interactions of two electrons at the nearest-neighbour sites. The parameters 
corresponding to these processes are: the hopping integral r ,  which is taken as t = - 1 
in our calculations; the Coulomb integrals U o ,  U1 for electrons at the same site and the 
nearest-neighbour site, respectively; and VI is the exchange integral. 

It is assumed that there are local-electron currents, each rotating around the pla- 
quette of four bonds. Moreover, the electron vortices are periodically ordered. Since 
rotating electrons induce local magnetic fields, one can make predictions about period- 
ically ordered phases of magnetic fluxes. The flux for each plaquette is ?@. Such a 
situation is exhibited in figure 1. The order parameter for the flux phase may be defined 
as 

where rp = nQ/(2Q0), Qo = hc/e is a one-electron flux quantum, the wavevector Q = 
(n/a, n / a ) ,  and a is the lattice constant. This definition is consistent with the law of 
current conservation (Kirchhoff's law) at each site. One can also consider the anti- 
ferromagnetic (AF) and the charge-density (CDW) ordering defined by 

n,  = C. (C~C,,) - ti = ~ 1 ~ )  COS(Q R , )  
U 

We assume that the average number of electrons per site is given by 

1 n = - ( C Z C j U )  = 1 
N 1.u 

(4) 

where N denotes the number of the sites in the system. 
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We can rewrite the Hamiltonian (1) in the mean-field approximation as 

H M F  = -2 qk[l  - nl(V, - U , )  cos q ] C k + , C k a  + 2 [ - a m O U O  + no(U0 + U , )  
k,  a L o  

+ inl(Vl - Ui)Yk sin q l c k t , C k +  Qo (6) 
where 

qk = cos k,a + cos k,a 

Y k  = COS k ,a  - COS k,u. 

Here k = ( k x ,  k,) is the wavevector of an electron. One can easily diagonalise the 
Hamiltonian (6) and find the stability conditions for the AF, CDW and flux phases (FL) at 
the temperature T 

1 
1 = U. - tanh(PEk’2) dk, d k ,  (AF) 

8 n 2 a 2  E k  

1 = ( -U0 - U1)- j j tanh(PEk/2) d k, d k ,  (CDW) 
8 n 2 a 2  E k  

(7)  

and /3 = l / k , T .  The integration is over the first Brillouin zone. It is seen that all integrals 
are positive and thus, the AF and CDW phases are stable if U. > 0 and U. + U ,  < 0, 
respectively. The flux phase is stable for V = VI - U ,  > 0. The conditions (7) and (8) 
are the same if one exchanges the parameters U. and - U0 - U , .  Therefore, we consider 
only the AF phase and the flux phase. The first integration in equations (7)-(9) gives the 
elliptic integrals of the first and second kinds. The second integration is performed 
numerically. (Only in the extreme cases, for small parameters U. and V, was it not 
possible to determine these singular integrals.) 

Figure 2 presents the stability regions for the antiferromagnetic and the flux phase 
in the plane of the parameters U. and V = Vi - U,. The AF and the FL states are stable 
along the vertical and the horizontal axis, for any U. > 0 and V > 0, respectively. These 
phases are separated by the wide region of the mixed phase (FL + AF), where both 
order parameters are @ > 0 and mo > 0. 

Figure 3 presents the dependence on the parameter V of the order parameters, the 
magnetic flux @ and n1 for the FL phase, as well as the local magnetisation mo for the AF 
ordering for two values of U. ( U o  = 0, (curves A), and U. = 2 (curves B)). It is seen 
that Q is a monotonically increasing function of V. At U. = 0 the parameter n1 increases 
slightly for small V and decreases for higher values of V. The AF ordering, with the 
magnetisation mo > 0, appears at a finite value of the on-site Coulomb integral U. 
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Figure 2. Stability regions of the antiferromagnetic phase (AF),  the flux phase (FL): and the 
mixed( flux-antiferr0magnetic)phase 
(FL + AF) in the plane of parameters U. and V = V ,  - U ,  for a square lattice with the average 
number electrons 17 = 1 per site. 
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Figure3. Dependence on V = V ,  - U ,  and the order parameters: Full curve, flux, @;broken 
curve, n,; dotted curve, magnetisation, mo for U, = 0 (curves A) and U, = 2 (curves B) at 
T=O.  

and at small V .  The order parameter ma increases with V ,  whereas the parameter nl  
decreases. In the mixed phase mo is strongly damped with the increasing V .  For very 
large V only the flux states exist. 

In figure 4 the temperature dependence of the order parameters CP, n1 and mo for 
V = 2.5, and U, = 0, 2 and 3 (curves A, B and C) is exhibited. Curves A correspond 
to the case when only the FL phase exists, curves C to the AF phase. In general, all para- 
meters are temperature dependent. However, in the AF phase (curve C) the parameter 
nl( T )  increases only slightly, and the magnetisation ma( T )  has a typical mean-field 
characteristic. For case 2 (curve B: U,= 2, V = 2.5) the mixed phase exists. The 
analysis showed that the critical temperature TAF (for the AF ordering) is always lower 
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Figure 4. Temperature dependence of: full curve, flux a; broken curve, n, ;  dotted curve, 
magnetisation,m,for U,, = O(curvesA), U, = 2(curvesB)and U(, = 3(curvesC).Allcurves 
are at V = 2.5. The temperature Tis in units t/k,. 

than the critical temperature TFL (for the FL ordering). A decrease of the magnetisation 
mo with T causes an increase of 

In conclusion, the flux phase induced by electron current vortices may appear in the 
system with a large exchange energy. It is not restricted to the extended Hubbard model, 
but may also occur in the t-J model. In contrast to the previous works [1, 21, it has been 
shown that the flux Q, per plaquette is a monotonic function of the exchange parameter 
Vas well as the temperature. The on-site Coulomb energy U. stabilises the AF ordering 
and destroys the flux phase. However, there is a wide region of parameters where the 
FL and the AF phases (or the FL and the CDW phases) coexist. The present considerations 
were made in the mean-field approximation. One can expect that fluctuations, which are 
important in 2~ systems, lead to another ground state. Introduction of some additional 
charges into the system (deviation from ii = 1) destabilise the ordered flux phase. The 
more favourable phase, in such a case, may be a liquid state of fluxes with some 
topological defects (e.g. skyrmions). It is interesting to investigate the flux phase in the 
presence of superconductivity, when the Cooper pairs have a non-zero orbital moment 
and when they induce local magnetic fields (local fluxes). These problems are under 
consideration and will be presented in the near future. 

and nl .  
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